4" ProTools DL Downlight Square Regressed Cover

Recessed Plaster Trim

Recessed Bezel Trim

Cut Out: D4.75" $^{\prime \prime}$ (12 Om)

Recessed Plaster Trim (RPT)

Cut Out: $\square 4.75^{\prime \prime}$ (12 Om)

Recessed Bezel Trim (RBT)

Luminaire

- 4" square downright with 2" light aperture.
- 1/2" regressed aperture / lens position.
- 55 degree cut-off.
- Luminaire and driver installed and maintained from below the ceiling.
- Minimum of $5.5^{\prime \prime}(127 \mathrm{~mm})$ ceiling void is required to install the fixture from below the ceiling (integral driver).
- Modular interchangeability throughout the entire ProTools range of products.

Fixation

- RPT = Recessed Plaster Trim
- RBT = Recessed Bezel Trim

Power ${ }^{1,2}$

■ L = Low Power, 5.7W @ 350mA

- M = Mid Power, 8.4W @ 500mA
- H = High Power, 12.0W @ 700mA
- XH = Extra High Power, 17.8W @ 1050mA

CRI/CCT ${ }^{3}$

90+CRI (Low/Medium/High/Extra High)

- $927=2700 \mathrm{~K},(720 / 999 / 1344 / 1884 \mathrm{Im})$
- $930=3000 \mathrm{~K},(775 / 1075 / 1447 / 2027 \mathrm{~lm})$
- $935=3500 \mathrm{~K},(775 / 1075 / 1447 / 2027 \mathrm{Im})$
- $940=4000 \mathrm{~K},(830 / 1151 / 1549 / 2171 \mathrm{Im})$

Cover

- SRP = Square Regressed Pinhole

Lens

- OA = Open Aperture
- RSL = Regressed Oolite Lens
- RSC = Regressed Satin Clear
- RSO = Regressed Satin Opal

Beam

- $16=16^{\circ}$ Beam Angle
- $32=32^{\circ}$ Beam Angle
- $42=42^{\circ}$ Beam Angle

Finish

- W = White
- G = Gray

Options

ProTools downlights require no additional options kits for remodel \& new construction

- LP = Landing Pan
- $C P=$ Chicago Plenum Housing
- IC = IC/NC Housing
${ }^{1}$ Other lumen packages available, consult factory.
${ }^{2}$ See LED data sheet for delivered lumens.
${ }^{3}$ Wattage shown does not include power supplies/drivers. System wattage adds 10-20\%.
${ }^{4}$ See power supply page for details.

Driver ${ }^{4}$

- X = Driver ordered separately
- SW = Switched/NON DIM
- D010 = 0-10/1-10V DIM
- DALI = DALI DIM
- LE = Leading-Edge DIM

