4" ProTools D Downlight Square Cone Cover

Recessed Plaster Trim

Recessed Bezel Trim

Cut Out: $\square 4.75$ " (12 Om)

Recessed Plaster Trim (RPT)

[^0]Recessed Bezel Trim (RBT)

Luminaire

■ 4" square aperture downlight with wide distribution ambient lighting.

- 0.7" regressed, evenly illuminated, highly efficient Satin Opal Lens.
- High efficiency, high transmission lens.
- Luminaire and driver installed and maintained from below the ceiling.
- Minimum of 5.5 " $(127 \mathrm{~mm})$ ceiling void is required to install the fixture from below the ceiling (integral driver).
- Modular interchangeability throughout the entire ProTools range of products.

Fixation

- RPT = Recessed Plaster Trim
- RBT = Recessed Bezel Trim

Power ${ }^{1,2}$

- L = Low Power, 5.5W @ 350mA
- M = Mid Power, 8W @ 500mA
- H = High Power, 11.4W @ 700mA

CRI/CCT ${ }^{3}$

90+CRI (Low/Medium/High Power)

- $927=2700 \mathrm{~K},(759 / 1074 / 1488 \mathrm{Im})$
- $930=3000 \mathrm{~K},(771 / 1092 / 1512 \mathrm{~lm})$
- $935=3500 \mathrm{~K},(795 / 1128 / 1566 \mathrm{Im})$
- $940=4000 \mathrm{~K},(834 / 1188 / 1638 \mathrm{Im})$

Driver ${ }^{4}$

- X = Driver ordered separately
- SW = Switched/NON DIM
- D010 = 0-10/1-10V DIM
- DALI = DALI DIM
- LE = Leading-Edge DIM

Cover

- SRC = Square Regressed Cone

Lens

- RSO = Regressed Satin Opal

Beam

- $110=110^{\circ}$ Beam Angle

Finish

- $W=$ White
- $G=$ Gray

Options ${ }^{5}$

ProTools downlights require no additional options kits for remodel \& new construction

- LP = Landing Pan
- $\mathrm{CP}=$ Chicago Plenum Housing
- IC = IC/NC Housing
- $\mathrm{WL}=$ Wet Location
${ }^{1}$ Other lumen packages available, consult factory.
${ }^{2}$ See LED data sheet for delivered lumens.
${ }^{3}$ Wattage shown does not include power supplies/drivers. System wattage adds 10-20\%.
${ }^{4}$ See power supply page for details.
${ }^{5}$ To specify multiple options, select the appropriate grouped codes from the dropdown e.g. LP-WL.

[^0]: Cut Out: $\square 4.75$ " $(120 \mathrm{~mm})$

